INDE CLASSES

Since 2000

PS

SSES

1

С

Since 2000

S

SSES

CUET 2024 Original Paper

01.	Consider implementation of database. Among the following options, choose the most appropriate data struc- ture for this								
	(1) B+ tree	(2) Linked list	(3) Queue	(4) Stack					
02.	There are 200 studer students play both for	nts in a school out whi otball and cricket. The	ich 120 students pl number of students	ay football, 50 students play cricket and 30 who play one game only is:					
	(1) 110	(2) 140	(3) 200	(4) 170					
03.	Which of the following	g are true:							
(A)	Ogive graph is used to	o measure the median of	of the collection of a	latas.					
(B)	Two events A and B independent events.	are such that $P(A) = 1$	1/2 and P(B) = $7/12$	2 and P(not A not B) = $1/4$ then A and B are					
(C)	Relation for mean, me	ode and median is give	en by Mode $= 3$ Me	dian – 2 Mean.					
(D)	The number of two-d	ligits even number form	med from digits 1, 2	, 3, 4, 5, is 10.					
	Choose the correct an	aswer from the options	given below:						
	(1) (A) and (B) only	(2) (A), (C) and (D)	only (3) (C)	and (D) only (4) (B) and (C) only					
04.	There are 15 points in then total number of s	a plane such that 5 poi traight lines formed are	nts are collinear and ::	no three of the remaining points are collinear					
	(1) 105	(2) 95	(3) 96	(4) 106					
05.	Match List – I with List – II								
	List – I	List	t – II						
(A)	Asynchronous	(I) A p	ulse that cause a log	gic device to be activated or change state					
(B)	Trigger	(II) The	operation is not exe	ecuted in step with the clock					
(C)	J–K Flip–flop	(III) Flip	flop and atleast set	reset toggle and hold modes of operation.					
(D)	D flip flop	(IV) Flip	flop with atleast se	t and rest modes of operations.					
	Choose the correct an	nswer from the options	given below:						
	(1) [(A–I); (B–II);	(C - III); (D - IV)]	(2) [(A – II); (I	(C - III); (C - III); (D - IV)]					
	(3) [(A – III); (B – IV	V); (C - II); (D - I)]	(4) [(A – I); (B	-II); (C-IV); (D-III)]					
06.	Consider a system with to represent the virtual	th 1K pages and 512 fr l address space memo	ames and each page ry:	e is of size 2 KB. How many bits are required					
	(1) 20 bits	(2) 21 bits	(3) 11 bits	(4) 16 bits					

CUET 2024 Original Paper

(II) $\left[\frac{\pi}{2},\pi\right] \cup \left(\pi,\frac{3\pi}{2}\right]$

(2) [(A - III); (B - II); (C - IV); (D - I)]

(III) $\left| \frac{1}{3}, 1 \right|$

- **07.** Match List I with List II
- List I (Function) (A) $y = \frac{1}{2 - \sin 3x}$ (I) $\left(1, \frac{7}{3}\right]$

(B)
$$y = \frac{x^2 + x + 2}{x^2 + x + 1}, x \in \mathbb{R}$$

- (C) $y = \sin x \cos x$
- (D) $y = \cot^{-1}(-x) \tan^{-1}x + \sec^{-1}x$ (IV) $\left[-\sqrt{2}, \sqrt{2}\right]$

Choose the correct answer from the options given below:

- (1) [(A III); (B I); (C IV); (D II)]
- (3) [(A-II); (B-III); (C-I); (D-IV)](4) [(A-II); (B-III); (C-IV); (D-I)]
- **08.** Each node is having a successor node in
 - (1) Singly linked list (2) Singly Circular Linked list
 - (3) Double Linked list (4) Not possible in any linked list
- **09.** How does the number of page frames affect and number of page faults for a given memory access pattern in FIFO page replacement algorithm?
 - (1) Increasing the number of page frames decreases the number of page faults.

(2) Increasing the number of page frames may increase or decrease the number of page faults depending on the memory access pattern.

- (3) Increasing the number of page frames always increases the number of page faults.
- (4) Increasing the number of page frames has no effect on the number of page faults.
- **10.** Arrange the following in increasing order of their per unit cost.

(A) DRAM (B) Magnetic disk (C) Optical disk (D) SRAM (E) Magnetic tape

Choose the correct answer from the options given below:

 $(1) E, C, B, A, D \qquad (2) E, C, B, D, A \qquad (3) C, B, E, D, A \qquad (4) C, B, D, E, A$

- 11. An equilateral triangle is inscribed in a parabola $y^2 = 8x$ whose one vertix is at the vertex of the parabola then the length of the side of the triangle is:
 - (1) $8\sqrt{3}$ units (2) $16\sqrt{3}$ units (3) $4\sqrt{3}$ units (4) $\sqrt{3}$ / 2 units
- 12. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in G.P. with the same common ratio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3)

(1) Lie on a straight line(2) Lie on an ellipse(3) Lie on a circle(4) Are vertices of a triangleHazratganj, Lucknow Ph.: 9953737836, 9838162263. e-mail id: info@inpsclasses.com

	Since 2000 NPS LASSES	ET 20	24 (Origin	al Pap	er		CLASSES
13.	Match List – I with List -	– II						
	List – I		List –	II				
(A)	Flash memory	(I)	Oldest	and Slowest				
(B)	PMOS	(II)	Used ir	n large scale inte	gration (LSI)			
(C)	NMOS	(III)	Least p	ower consumpt	ion			
(D)	CMOS	(IV)	Non vo	olatile RAM whi	ich is powered o	continuo	usly	
	Choose the correct answ	er from the op	tions giv	ven below:				
	(1)[(A-I);(B-IV);(C)]	C - III); (D - II)	I)]	(2) [(A – I); (B	8 – IV); (C – II); (D – I	II)]	
	(3) [(A–IV); (B–I); (C	C – III); (D – II	I)]	(4)[(A-IV);	(B - I); (C - II)); (D – I	II)]	
14.	Match List – I with List - List – I	– II					List	– 11
(A)	Eccentricity of the conic	$x^2 - 4x + 4y - 4y$	$+4y^{2} =$	12 is		(I)	$\frac{10}{3}$	
(B)	Latus rectum of conic 52	$x^2 + 9y^2 = 45$	is			(II)	1	
(C)	The straight line $x + y = a$	a touches the c	curve y	$= x - x^2$ then va	alue of a is	(III)	2	
(D)	Eccentricity of conic $3x^2$	$y^{2} - y^{2} = 4$ is				(IV)	$\frac{\sqrt{3}}{2}$	
	Choose the correct answ	ver from the op	tions giv	ven below:				
	(1) [(A–I); (B–II); (C	-IV; (D $-III$	I)]	(2) [(A–II); (B-I; (C – III); (D – I	V)]	
	(3)[(A-IV);(B-I);(C)]	C - II); (D - II)	[)]	(4) [(A–IV);	(B - II); (C - I)); (D – I	II)]	
15.	The area of the region be	ounded by the	curve y	$x^2 = 4x$ and x^2	=4y is			
	(1) $\frac{16}{3}$ sq.units ((2) $\frac{23}{6}$ sq.units	5	(3) $\frac{13}{3}$ sq.units	$(4) \frac{2}{3}$	$\frac{8}{5}$ sq.unit	ts	
16.	The value of x satisfies th	ne inequality x	x - 1 +	$x-2 \ge 4$ if				
	(1) $\mathbf{x} \in \left(-\infty, -\frac{1}{2}\right] \cup \left[\frac{7}{2}\right]$,∞) (2) x ∈	≣(-∞,-	$\left(\frac{1}{2}\right) \cup \left(\frac{7}{2},\infty\right)$	$(3) \ \mathbf{x} \in \left[-\frac{1}{2}\right]$	$\left[\frac{7}{2}\right]$	(4) X	$\epsilon \in \left(-\frac{1}{2}, \frac{7}{2}\right)$
17.	Four students are sitting Amrita. Ankit is between	on a bench to b Amrita and D	e photo ipak. Ide	grpahed. Kamal entify students s	l is to the left of itting in corner	Amrita. 's of the	Dipak i bench?	s to the right of
	(1) Kamal, Ankit ((2) Kamal, Dip	oak	(3) Dipak, Am	rita (4) Ai	mrita, Ar	nkit	
18.	It has been established th	nat						
	(A) Aryabhatta was			(B) Although a	great mathema	tician		
	(C) Weak in science			(D) Right from	his school day	s.		
	What will be sequence to	o make a corre	ct staten	nent from the at	ove options	_		
	(1) A, B, C, D ($(2) \mathbf{B}, \mathbf{A}, \mathbf{C}, \mathbf{D}$		(3) B, A, D, C	(4) C	, B, D, A	A	

[3]

INPS CLASSES

web. : inpsclasses.com

IN	PS CLASSES			[5]			W	/eb. : inpsclasses.com
	Since 2000	CU	ET 20	24	Origiı	nall	Paper	Since 2000
27.	Let A' represe	nt complem	ent of A. Whi	ch of th	e following bo	oolean ex	pressions is/are	true?
	(A) $A + AB =$	= A (1	(A+B)' =	A'B'	(C) $(A')' =$	А	(D) $(AB)' =$	= A '+ B '
	Choose the co	orrect answe	er from the opt	tions giv	ven below:			
	(1)(A), (B) as	nd (D) only			(2) (A) and ((D) only		
	(3)(A),(B),	(C) and (D))		(4)(B) and (D) only.		
28.	The function tinuous at all p	$f(x) = [x]^{r}$, integer $n \ge$	2 (whe	ere [y] is the g	reatest in	teger less than o	or equal to y), is discon-
	(1) real number	er (2	2) all non-integ	ger real	numers	(3) 01	nly at zero	(4) integers
29.	A logic circuit input, is called	, that can oc 1	ld two 1-bit m 	umbers	and produce c	output for	• sum and carry	but cannot handle carry,
	(1) Half adder	c (2	2) Full adder		(3) Multiplex	ker	(4) Encoder	
30.	On a system us	sing simple	segmentation,	followi	ing is the segm	ent table		
	Segment	Limit	Base					
	0	500	1000			,		
	1	200	2000					
	2	300 100	1700					
	What is the pl	nysical addr	ess for the log	gical add	dress 2, 212?			
	(1) 2712	(2	2) 512		(3) 2212		(4) 2800	
31.	Match List – I	with List –	II					
	List – I			List –	II			
(A)	$\int_{0}^{\frac{\pi}{2}} \frac{\sin^4 x}{\sin^4 x + \cos^4 x}$	$\frac{1}{4} \frac{1}{x} dx$		(I)	0			
(B)	$\frac{\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \frac{1}{1 + \sqrt{\tan x}} dx$	lx		(II)	1			
(C)	$\int_{0}^{1} x e^{x} dx$			(III)	$\frac{\pi}{12}$			
(D)	$\int_{-1}^{1} x^{109} \cos^{88} x d$	Х		(IV)	$\frac{\pi}{4}$			
	Choose the co	orrect answe	er from the opt	tions giv	ven below:			
	(1) [(A–IV);	(B-III); (C-I; ($D-II$)]	(2) [(A – IV); (B – II	I); (C – II); (D	- I)]
	(3) [(A–III);	(B-IV); (C - II); (D - I))]	(4) [(A – III); (B – IV	√); (C−I); (D -	- II)]

IN	IPS CLASSES		[6]	We	eb. : inpsclasses.com					
	Since 2000 NPS ASSES	JET 2024	l Origina	al Paper	Since 2000 INPS CLASSES					
32.	If the roots of the equ	ation $x^2 + 4x + a^2 - 3$	a = 0 are real then the second sec	the value of a (is / are)						
	(1) $a \in (-\infty, -1) \cup (4$	(a,∞) (2) $a \in (-\infty)$	$[\infty, -1] \cup [4, \infty)$	(3) $a \in [-2, 4]$	(4) $a \in [-1, 4]$					
33.	Choose the odd one of	out.								
	(1)August	(2) October	(3) November	(4) March						
34.	Statement: Some pen All schools ar Some College Consider the following (A) Some College (B) Some Pans ar	s are books. e Books. es are Schools. g conclusions based or es are pens.	n above statements.							
	(B) Some College	e Schools.								
	Choose the correct co	nclusions from the opt	tions given below:							
	(1) (A) and (B)	(2) (A), (B) and (C)) (3) (C) only	(4) (B) and (C	C) only					
35.	If P means '+', A mea	ns '×', B means '-' an	nd J means ' \div ', the	en 14J2P3A6B7 = ?						
	(1) 28	(2) 18	(3) 4	(4) 35						
36.	Which of the following	g statement sare TRUI	Ε?							
(A)	A equation $ax^2 + bx$	+c = 0 has real and di	stinct roots if $b^2 - c$	$4ac \ge 0$ and $a \ne 0$.						
(B)	The unit digit in 49 ¹⁸	is 1.								
(C)	If two lines make complementry angles with the axis of x then the product of their slopes is 1.									
(D)	The line $bx - ay = 0$ meet the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.									
	Choose the correct an	swer from the options	given below:							
	(1) (A) and (D) only	(2) (B) and (C) only	(3)(A), (B) and	d(C) only $(4)(A)$	A), (B) and (D) only					
37.	The line passes throug are given by	th a point (2, 3) such th	hat sum of its interce	pts on the axes is 12 th	en equation of line/s is/					
	(A) $3x + y = 9$	(B) $x + 3y = 9$	(C) $x + 2y = 8$	(D) $5x + 7y =$	= 35					
	Choose the correct an	swer from the options	given below:							
	(1) (A) only	(2) (A), (B) and (C)) only (3) (A)	and (C) only (4) (E	(C) and (D) only					
38.	$\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} =$									
	(1)0	(2) 1	(3) $\sqrt{2}$	(4) 1/2						

			C	UET 2024	Origina	al Paper			
39.	Arrai	nge the f	following	g in the increasing order of	of their asympotic c	complexities:			
	(A) I	nsertion	sort (be	st case)	(B) Bubble sort (worst case)				
	(C) E	Binary S	earch (w	orst case)	(D) Merge sort (worst case)				
	(1) A	, C, B,	D	(2) D, A, C, B	(3) A, B, C, D	(4) C, A, D, B			
40.	If per is	mutaito	on of the	letters of the word 'AGA	AIN' are arranged	in the order as in a dictionary then 49th word			
	(1) II	NGAA		(2) INAAG	(3) NAAGI	(4) GNAAI			
41.	The r are	nean of	5 data is	5.2 and their variance i	s 27.296. If there o	of the data are 1, 3 and 6 then other two data			
	(1) 1	2 and 4		(2) 9 and 7	(3) 10 and 6	(4) 11 and 5			
42.	If the	vertice	s of a tria	angle are (1, 2), (2, 5) ar	nd $(4, 3)$ then the an	rea of the triangle is:			
	(1)3	sq. unit	s	(2) 4 sq. units	(3) 6 sq. units	(4) 8 sq. units			
43.	Whic	h of the	followin	g statements are TRUE	?				
(A)	If eac the va	h eleme alue of t	nt in a ro he deteri	w is a constant multiplier ninant is always non-zer	r of corresponding ro.	element of another row of a determinant, then			
(B)	If eac is the	h eleme produc	nt on one t of the d	e side of the principal dia iagonal elements.	agonal of a determi	nant is zero, then the value of the determinant			
(C)	The v	value of	determir	nant of skew symmetric	matrix of odd orde	er is always non-zero.			
(D)	IfAis	s non-sii	ngular m	atrix of order three, ther	$ adjA = A ^2$				
	Choose the correct answer from the options given below:								
	(1) (I	3) and (1	D) only	(2) (A) and (B) only	(3)(A), (B) and	I(C) only (4)(A), (C) and (D) only			
44.	There is a certain relation between two given words on lieft wide of : : and one word is given on the right side of : : while another word is missing. Select the missing word which have same relation as the word pairs on the left side of : : symbol.								
	Curre	ent : Ciro	cuit : : Ea	arth:?					
	(1) S	olar Sys	tem	(2) Orbit	(3) Planet	(4) Moon			
45.	Decr	easing th	he RAM	of a computer typically	leads to which of the	he following outcomes?			
	(1) V	irtual m	emory in	creases	(2) Page faults increses				
	(3) P	age faul	ts decrea	ases	(4) Segmentation	on faults occurs.			
46.	Choo	ose the n	nissing cl	haracters?					
	4	5	6						
	4	?	15						
	4	13	28						
	(1) 5			(2)7	(3)9	(4) 8			

[8]

CUET 2024 Original Paper

47. We can say that a schedule is conflict serializable?

(1) If a schedule T can be transformed into a serial schedule U by a series of swaps of conflicting operations.

(2) If a schedule T can be transformed into a serial schedule U by a series of swaps of nonconflicting operations.

(3) If a schedule T can be transformed into a nonserial schedule U by a series of swaps of conflicting operations.

(4) If a schedule T can be transformed into a nonserial schedule U by a series of swaps of nonconflicting operations.

48. A function f(x) is defined as f(x)
$$\begin{cases} \frac{1-\cos 4x}{x^2} ; x < 0\\ a ; x = 0\\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})-4}} ; x > 0 \end{cases}$$

r

if the function f(x) is continuous at x = 0, then the value of a is: (1) 4 (2) 6 (3) 8 (4) 10

49. The following integers are needed to be stored in ascending order using bubble sort. 5, 8, 22, 18, 1

Following are the results of various passes during the sorting process.

(1) 5, 1, 8, 18, 22 (2) 1, 5, 8, 18, 22 (3) 5, 8, 18, 1, 22 (4) 5, 8, 1, 18, 22

50. The range of integers that can be represented by a 2's complements number system is ______.

where is n is number of bits in number.

- (1) -2^{n-1} to $2^{n-1} 1$ (3) -2^{n-1} to 2^{n-2} (2) $-(2^{n-1} - 1)$ to $(2^{n-1} - 1)$ (4) $-(2^{n-1} + 1)$ to $(2^{n-1} - 1)$
- **51.** The equation of a circle that passes through the points (3, 0) and (0, -2) and its lies on a line 2x + 3y = 3 then equation of the cicle is given by:

(1) $x^2 + y^2 + 2x + 16y + 72 = 0$	$(2) 10x^2 + 10y^2 - 6x - 16y - 72 = 0$
$(3) 5x^2 + 5y^2 + 6x + 16y + 72 = 0$	$(4) 10x^2 + 10y^2 + 6x + 16y - 72 = 0$

52. K is the son of A's mother's sister. Q is daughter of D, who is the father of G and grandfather of A. P is the daughter of H who is grandmother of K. D is husband of H and G is husband of L. How is P related to Q?

(1) Sister (2) Mother (3) Daughter (4) Cousin

53. Given $\sqrt{(224)_r} = (13)_r$ where r is the radix. The value of r is _____

(1) 10 (2) 8 (3) 5 (4) 6

Since 2000

CUET 2024 Original Paper

[9]

web.: inpsclasses.com

- 54. What are the ways to implement a priority Queue?
 - (A) Arrays (B) Fibonacci tree (C) Heap Data Structure (D) Linked list

Choose the correct answer from the options given below:

- $(1) (A), (B) and (D) only \qquad (2) (B), (C) and (D) only$
- (3) (A), (B), (C) and (D) (4) (A), (C) and (D) only
- **55.** An operating system cotains 4 user processor each requiring 5 units of resource R. The minimum number of required units of R such that no deadlock will every occur is

(1) 20 (2) 4 (3) 17 (4) 15

56. The current allocation and Maximum requirement of different types of resources for four processes are given below:

Process-	Max			Allocation			Availabe		
	R1	R2	R3	R1	R2	R3	R1	R2	R3
P1	8	6	4	1	2	1	4	4	5
P2	4	3	3	3	1	1			
P1	10	1	3	4	1	3			
P4	3	3	3	3	2	2			

Consider the following four statements.

(A) $P2 \rightarrow P4 \rightarrow P1 \rightarrow P3$ is a safe sequence (B) $P4 \rightarrow P2 \rightarrow P1 \rightarrow P3$ is a safe sequence

(C) $P4 \rightarrow P2 \rightarrow P2 \rightarrow P1$ is a safe sequence (D) $P1 \rightarrow P4 \rightarrow P2 \rightarrow P3$ is a safe sequence

Identify correct statements from the given options.

(1) (A), (B) and (D) only	(2) (A), (B) and (C) only
(3) (B), (C) and (D) only	(4) A, (B), (C), (D)

57. In a class, 4/5 of the students are boys and rest are girls. If 2/5 of the boys and 1/4 of girls are absent, what part of the total number of students is present?

	(1) 37/100	(2) 63/100	(3) 53/100		(4) 47/100
58.	Match List – I w List – I (Algorit	th List – II hms)		List –	- II (Complexity)
(A)	Bellman - Ford al	(I)	$O(V ^2)$		
(B)	Dijkstra Algorithi	n		(II)	$O((V+E)\log V)$
(C) (D)	Prim's Algorithm Topological sorti Choose the corre	ng (with adjacency list rej ct answer from the optio	presentation) ns given below:	(III) (IV)	O(nm) O(n+m)
	(1) [(A – III); (B	-I; (C $-II$); (D $-IV$)]	(2)[(A-II);	(B - IV)); $(C - III); (D - I)]$
	(3) [(A – III); (B	-IV); (C-I); (D-II)]	(4) $[(A - II);$	(B - I);	(C - III); (D - IV)]

fork();

CUET 2024 Original Paper

- Let $\alpha > 2$ is an integer. If there are only 10 postive integers satisfying the inequality $(x \alpha)(x 2\alpha)(x \alpha^2) < 0$ 59. then the value/s of α is (1) 3 and 4 (2)3(4)4(3) - 3 $\int \frac{(x^5 - x)^{\overline{5}}}{x^{-6}} dx$ is equal to (where C is an arbitrary constant) 60. $(1)\left(1-\frac{1}{x^4}\right)^{\frac{4}{5}} + C \qquad (2)\left(x^4 - \frac{1}{x^4}\right)^{\frac{6}{5}} + C \qquad (3)\frac{5}{24}\left(1-\frac{1}{x^4}\right)^{\frac{6}{5}} + C \quad (4)\frac{5}{24}\left(x^4 - \frac{1}{x^4}\right)^{\frac{6}{5}} + C$ 61. Consider the following statements (A) RAM is a combinational circuit (B) RAM is sequential circuit (C) PLA is a combinational circuit (D) PLA is a sequential circuit Which of the above statements are true (1) (A) and (D) only (2) (B) and (C) only (3) (B) and (D) only (4) (A) and (C) only 62. The idea of cache memory is based on the which of the following? (1) Principle of locality reference. (2) Based on the fact that large portion of a program is referenced relatively. (3) Principle of 10-90 rule (4) Non volatile storage Which of the following is not an application of Stack? **63**. (1) Tower of Hanoi (2) Recursion (3) Voter polling station (4) Parantheses Matching Amit was counting down from 34, Punit was counting upwards the numbers starting from 2 and he was calling **64**. out only the even numbers. What common number will they call out at the same time if they were calling out at the same speed? (1)22(2)23(3)24(4) They will not call out the same number 65. How many child processes will be created by following fork() system call? fork(); fork(); fork();
 - (1) 4 (2) 16 (3) 15 (4) 3

	NPS CLASSES		J web.: inpsclasses.com				
	NPS LASSES	JET 2024	Original Paper				
66.	A equation of conic is	$ax^2 + 2hxy + by^2 + 2gx$	x + 2fy + c = 0, where a, b, c, f, g and h are constants.				
	Then which of the follow	wing statement are true?	2				
(A)	The given conic is circ	le if $a = 0$ and $b = 0$.					
(B)	The given conic is circl	e if $a = b \neq 0$ and $h = 0$					
(C)	The given conic is circl	e if $a = b \neq 0$ and $h \neq 0$).				
(D)	The given conic repres Choose the correct ans (1) (B) only	ents a pair of real and d wer from the options giv (2) (B) and (D) only	istinct straight lines if $f = g = c = 0$ and $h^2 - ab > 0$. wen below: (3) (A), (B), (C) and (D) (4) (D) only				
67.	Match List – I with Lis	t–II					
	List – I Function f(x)	List – f(0)	П				
(A)	$f(x) = \frac{\log(1+4x)}{x}$	(I)	$\frac{1}{4}$				
(B)	$f(x) = \frac{\log(4+x) - \log(x)}{x}$	<u>og 4</u> (II)	1				
(C)	$f(x) = \frac{x}{\sin x}$	(III)	4				
(D)	$f(x) = \frac{1 - \cos^3 x}{x \sin 2x}$	(IV)	$\frac{3}{4}$				
	Choose the correct ans	wer from the options give	ven below:				
	(1) $[(A - I); (B - III); (B - III)]$	(C - IV); (D - II)]	(2) $[(A-I); (B-III); (C-II); (D-IV)]$				
	(3)[(A-III); (B-I); ((C - II); (D - IV)]	(4) $[(A - III); (B - I); (C - IV); (D - II)]$				
68.	Match List – I with Lis	t-II					
()	List – I	List –					
(A) (P)	Unitical Region	(I) (II)	Condition variable				
(D) (C)	Deadlock		Principle of locality				
(C) (D)	Wait/signal	(III) (IV)	Mutual exclusion				
(-)	Choose the correct ans	wer from the options gives	ven below:				
	(1) $[(A - IV); (B - III)]$; (C - I); (D - II)]	(2) [(A - IV); (B - III); (C - II); (D - I)]				
	(3) [(A – III); (B – IV)	; (C – II); (D – I)]	(4) [(A - III); (B - IV); (C - I); (D - II)]				

(B) (C) (1)(A)(2)(B)(3)(C)(4)(D)

74. In a computer if the page fault service time is 10 ms and average memory access time is 30 ns. If one page fault is generated for every 106 memory accesses. What is the effective access time for the memory?

(1) 21 ns approximate (2) 25 ns approximate (3) 30 ns approximate (4) 40 ns approximate

75. In a certain code if SCOTLAND is written as 12345678, LOAN is written as 1435, LOTS is written as 8124, DAN is written as 537 and SON is written as 458, then what will be the code for 'C'?

INPS CLASSES

CUET 2024 Original Paper

Answer Key

01. (1)	02. (1)	03. (2)	04. (3)	05. (2)	06. (2)	07. (1)	08. (2)	09. (2)	10. (1)
11. (2)	12. (1)	13. (4)	14. (3)	15. (1)	16. (1)	17. (2)	18. (2)	19. (1)	20. (4)
21. (3)	22. (1)	23. (4)	24. (3)	25. (2)	26. (2)	27. (3)	28. (4)	29. (1)	30. (1)
31. (2)	32. (4)	33. (3)	34. (3)	35. (2)	36. (2)	37. (3)	38. (3)	39. (4)	40. (3)
41. (2)	42. (2)	43. (1)	44. (2)	45. (2)	46. (3)	47. (2)	48. (3)	49. (2)	50. (1)
51. (2)	52. (1)	53. (3)	54. (4)	55. (3)	56. (2)	57. (2)	58. (1)	59. (4)	60. (3)
61. (2)	62. (1)	63. (3)	64. (4)	65. (3)	66. (2)	67. (3)	68. (1)	69. (2)	70. (3)
71. (3)	72. (2)	73. (3)	74. (2)	75. (1)					

Since 2000

INPS CLASSES

